МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 6321— 2019

ЖИРЫ И МАСЛА ЖИВОТНЫЕ И РАСТИТЕЛЬНЫЕ

Определение температуры плавления в открытых капиллярах (температура скольжения)

[ISO 6321:2002, Animal and vegetable fats and oils — Determination of melting point in open capillary tubes (slip point), IDT]

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Некоммерческой организацией «Ассоциация производителей и потребителей масложировой продукции» на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
- 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 238 «Масла растительные и продукты их переработки»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2019 г. № 123-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004 -97	Код страны по МК (ИСО 3166) 00497	Сокращенное наименование национального органа по стандартизации		
Армения	AM	Минэкономики Республики Армения		
Беларусь	BY	Госстандарт Республики Беларусь		
Киргизия	KG	Кыргызстандарт		
Молдова	MD	Институт стандартизации Молдовы		
Россия	RU	Росстандарт		
Узбекистан	UZ	Уэстандарт		

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 26 ноября 2019 г. межгосударственный стандарт FOCT ISO 6321—2019 введен в действие в качестве национального стандарта Российской Федерации с 1 ноября 2020 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 6321:2002 «Жиры и масла животные и растительные. Определение точки плавления в открытых капиллярных трубках (температура скольжения)» [«Animal and vegetable fats and oils Determination of melting point in open capillary tubes (slip point)», IDT].

Международный стандарт разработан Подкомитетом SC 11 «Растительные и животные жиры и масла» Технического комитета ISO/TC 34 «Пищевые продукты» Международной организации по стандартизации (ISO).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6) и для увязки с наименованиями, принятыми в существующем комплексе межгосударственных стандартов.

При применении настоящего стандарта рекомендуется использовать вместо ссылочного международного стандарта соответствующий ему межгосударственный стандарт, сведения о котором приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 Некоторые элементы настоящего стандарта могут быть объектом патентных прав. Международная организация по стандартизации (ISO) не несет ответственность за идентификацию какого-либо или всех патентных прав Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

> © ISO, 2002 — Все права сохраняются © Стандартинформ, оформление, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЖИРЫ И МАСЛА ЖИВОТНЫЕ И РАСТИТЕЛЬНЫЕ

Определение температуры плавления в открытых капиллярах (температура скольжения)

Animal and vegetable fats and oils.

Determination of melting temperature in open capillary tubes (slip point).

Дата введения — 2020—11—01

1 Область применения

Настоящий стандарт устанавливает два метода определения температуры плавления в открытых капиллярах, широко известной как температура скольжения, животных и растительных жиров и масел (далее — жиры).

Метод А применим только к жирам, которые при комнатной температуре находятся в твердом состоянии и которые не проявляют выраженного полиморфизма.

Метод В применим ко всем жирам, которые при комнатной температуре находятся в твердом состоянии и свойства полиморфизма которых неизвестны.

Метод определения температуры плавления проб пальмового масла приведен в приложении А.

П р и м е ч а н и е 1 — Применительно к жирам с выраженным полиморфизмом метод А будет давать различные и менее удовлетворительные результаты, чем метод В.

П р и м е ч а н и е 2 — Жиры, проявляющие выраженный полиморфизм, представлены в основном маслом какао и жирами, содержащими значительное количество 2-ненасыщенного, 1,3-насыщенного триацилглицерина.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт: ISO 661, Animal and vegetable fats and oils — Preparation of test sample (Жиры и масла животные и растительные. Приготовление пробы для испытания)

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 температура плавления (в открытых капиллярах), температура скольжения [melting point (in open capillary tubes), slip point]: Температура, при которой столбик жира в открытом капилляре начинает подниматься в соответствии с условиями, установленными в настоящем стандарте.

4 Сущность метода

Капилляр, в котором находится столбик жира, кристаллизовавшегося в контролируемых условиях, погружают на установленную глубину в воду, температуру которой увеличивают с заданной скоростью. Температуру, при которой наблюдается начало подъема столбика жира в капилляре, регистрируют.

5 Аппаратура

Используют стандартное лабораторное оборудование¹⁾, в том числе перечисленное ниже.

5.1 Капилляры, имеющие одинаковые (однотипные) стенки, открытые с обеих сторон, внутренний диаметр от 1.0 до 1,2 мм, наружный диаметр от 1,3 до 1,6 мм, толщина стенки от 0,15 до 0,20 мм и длина от 50 до 60 мм.

Проверяют внутренний и наружный диаметры капилляров с помощью испытательного калибра, как показано на рисунке 1.

Перед применением капилляры тщательно промывают последовательно хромовой смесью, водой, ацетоном и затем сущат в сушильном шкафу. Рекомендуется использовать новые капилляры.

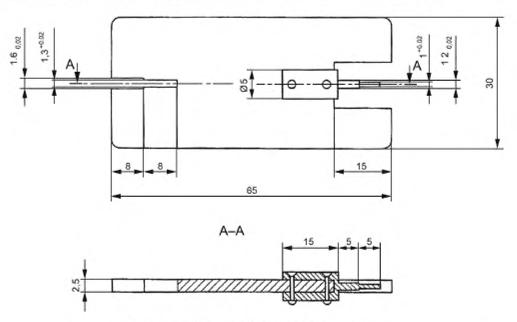


Рисунок 1 — Испытательный калибр для капилляров

- 5.2 Термометр, с ценой деления 0,1 °C, градуированный (поверенный) в диапазоне ожидаемых температур плавления.
 - 5.3 Мешалка электрическая.
- 5.4 Охлаждающая баня, с термостатическим контролем, наполненная рассолом или другой незамерзающей жидкостью, температура в которой поддерживается термостатом в диапазоне от минус 10 °C до минус 12 °C, или наполненная смесью дробленого льда и соли (в соотношении 2:1 по массе) с температурой от минус 10 °C до минус 12 °C.
 - 5.5 Нагревательное оборудование, состоящее из следующих элементов:
- а) водяная рубашка, изготовленная из стекла, оснащенная входной и выходной трубками, имеющая форму и размеры, соответствующие рисунку 2;
- b) нагреватель водяной, обеспечивающий подачу в водяную рубашку [а)] медленной струи воды, скорость увеличения температуры которой можно регулировать в диапазоне от 0,5 °C/мин до 4 °C/мин.

Пример подходящего нагревателя показан на рисунке 3.

Также могут быть использованы нагреватели других типов, такие как, например, водяная баня с магнитной мешалкой, обеспечивающие регулирование повышения температуры с заданной скоростью.

¹⁾ При проведении исследования могут быть использованы приборы для определения температуры плавления фирмы «Mettler Toledo AG» типов MP55 и MP80. Эта информация приведена для удобства пользователей настоящего стандарта и не является рекламной поддержкой данных приборов.

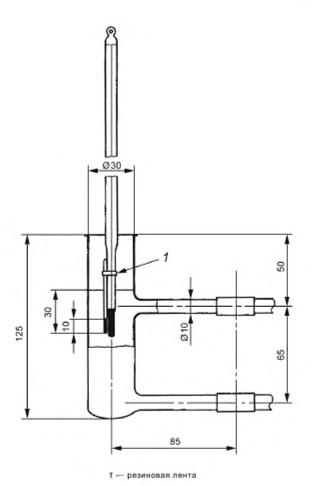
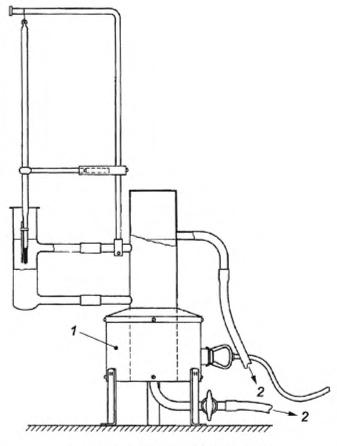



Рисунок 2 — Водяная рубашка

† — нагревательный элемент (220 Вт); 2 — в слив

Рисунок 3 — Пример нагревателя (нагревание с помощью естественной конвекции)

6 Отбор проб

В лабораторию следует направлять представительную пробу. Она не должна быть повреждена или изменена во время транспортирования или хранения.

Отбор проб не является частью метода, установленного в настоящем стандарте. Рекомендуемый метод отбора проб приведен в ISO 5555 [1].

7 Подготовка пробы для испытания

Анализируемую пробу подготавливают в соответствии с ISO 661.

8 Проведение испытания

8.1 Подготовка капилляров для метода А

Расплавляют навеску для анализа максимально быстро при температуре, не менее чем на 5 °C и не более чем на 10 °C превышающей температуру, при которой происходит полное расплавление.

Погружают два капилляра (5.1) в расплавленную пробу, пока в них не поднимутся столбики жира высотой (10 ± 2) мм. Сразу после наполнения капилляров быстро стирают жир, попавший на наружную

поверхность капилляров, фильтровальной бумагой (впитывающей тканью). Затем помещают наполненные капилляры на несколько секунд в стакан со льдом, чтобы жир застыл.

Помещают капилляры в охлаждающую баню (5.4) на 5 мин.

Продолжают в соответствии с 8.3.

8.2 Подготовка капилляров для метода В

Расплавляют навеску для анализа максимально быстро при температуре, не менее чем на 5 °C и не более чем на 10 °C превышающей температуру, при которой происходит полное расплавление.

Охлаждают расплавленную пробу при периодическом помешивании, пока ее температура не достигнет 32 °C — 34 °C, затем непрерывно перемешивают с помощью мешалки (5.3), давая жиру остыть до появления первых признаков мутности.

Продолжают перемешивание вручную, пока жир не приобретет консистенцию пасты, затем переносят его в химический стакан вместимостью 100 мл при температуре (17 ± 2) °C.

Выдерживают жир при этой температуре в течение не менее 24 ч.

Вдавливают четыре капилляра (5.1) в подготовленный жир так, чтобы столбик жира достиг (10 ± 2) мм. После этого быстро стирают жир, попавший на наружную поверхность капилляров, фильтровальной бумагой (впитывающей тканью).

Хранят капилляры при температуре (17 ± 2) °C, до проведения определения.

8.3 Определение

- 8.3.1 Стараясь не нагреть жир от тепла рук, берут по два капилляра, подготовленные для метода А (8.1) или для метода В (8.2), и соединяют с термометром с помощью небольших резиновых полосок (или другого подходящего средства, например, резинового кольца) так, чтобы столбики жира располагались в нижней части капилляров, рядом с шариком термометра.
- 8.3.2 Наполняют водяную рубашку [5.5а)] и водяной нагреватель [5.5b)] предварительно прокипяченной водой, охлажденной до 15 °C. Подвешивают или вставляют в зажим термометр с присоединенными к нему капиллярами посередине водяной рубашки так, чтобы нижние концы капилляров располагались на расстоянии 30 мм от поверхности воды.
- 8.3.3 Включают нагреватель (5.5), так чтобы медленная струя воды проходила через водяную рубашку, регулируя нагревание таким образом, чтобы скорость повышения температуры воды, измеряемой термометром в водяной рубашке, составляла от 3 °С/мин до 4 °С/мин для метода А и 1 °С/мин для метода В.
- 8.3.4 Для каждого из пары капилляров регистрируют значение температуры, показанное термометром в момент начала подъема столбика жира.
- 8.3.5 Вычисляют среднее арифметическое от двух полученных показаний. Для метода А данное среднее арифметическое берут как результат одного определения.
- 8.3.6 Для метода В повторяют операции, описанные в 8.3.1—8.3.3, используя оставшиеся два капилляра (8.2), снижая скорость повышения температуры до 0,5 °С/мин, начиная с момента когда температура воды будет на 5 °С ниже среднего показания, определенного по 8.3.5. Для каждого из двух капилляров регистрируют значение температуры, показанное термометром сразу после того, как столбик жира начнет подниматься в капилляре. Записывают среднее арифметическое от двух полученных показаний и берут его как результат одного определения.

8.4 Количество определений

Выполняют два определения на одной и той же пробе [т.е. получают два средних показания для метода А (8.3.5) и два средних показания для метода В (8.3.6)].

9 Представление результатов

В качестве результата берут среднее арифметическое от двух определений. Результат выражают с точностью до 0,1 °C.

10 Точность

10.1 Межлабораторные испытания

Информация о межлабораторных испытаниях по определению точности метода приведена в приложении В. Значения, полученные в результате данных межлабораторных испытаний, не могут быть применимы к другим образцам, кроме тех, которые указаны в данном приложении.

FOCT ISO 6321-2019

10.2 Повторяемость (сходимость)

Абсолютное значение разности между двумя независимыми результатами одного испытания, полученными при применении одного и того же метода, на одном и том же испытываемом материале, в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования в течение короткого промежутка времени, не должно превышать значения 0,5 °C для метода A и 1,0 °C для метода B не более чем в 5 % случаев.

11 Протокол испытания

Протокол испытания должен включать следующее:

- всю информацию, необходимую для полной идентификации пробы;
- сведения об используемом методе отбора проб, если известно;
- сведения об используемом методе испытания (т.е. метод А или метод В по ISO 6321);
- любые детали, не указанные в настоящем стандарте или рассматриваемые как необязательные,
 а также все особенности, которые могли повлиять на результат(ы) испытания;
 - информацию о полученном(ых) результате(ах);
 - если была проверена повторяемость, информацию о полученном окончательном результате.

Приложение А (обязательное)

Метод для проб пальмового масла

Расплавляют пробу и фильтруют ее через фильтровальную бумагу. Фильтрование проводят в сушильном шкафу, установленном на температуру 60 °C, чтобы избежать кристаллизации пробы. Оставляют профильтрованную пробу в сушильном шкафу на 10 мин, пока из нее не выйдут все пузырьки воздуха.

Погружают три чистых капилляра в расплавленную пробу так, чтобы в них поднялись столбики жира на высоту приблизительно 10 мм. Сразу же охлаждают капилляры с жиром, прижимая их к куску льда и поворачивая, пока жир не застынет. Не допускают соприкосновения открытого конца капилляра со льдом. Быстро протирают капилляры тонкой фильтровальной бумагой. Помещают капилляры в пробирку, кондиционированную при температуре (10 ± 1) °C, которая стоит в стакане с водой, в водяной бане с термостатическим контролем. Стакан в водяной бане выдерживают в течение 16 ч при температуре (10 ± 1) °C.

Для определения выполняют процедуры в соответствии с 8.3.1—8.3.3. Регулируют скорость повышения температуры в водяной рубашке на уровне 1 °С/мин, снижая ее до 0,5 °С/мин при достижении температуры скольжения. Регистрируют значения температуры, показанные термометром, как только жир начинает подниматься в каждом из капилляров.

Берут среднее арифметическое от трех полученных показаний как результат одного определения.

Приложение В (справочное)

Результаты межлабораторного исследования

Два межлабораторных исследования были выполнены на международном уровне в 1982 г. и 1986 г. Техническим комитетом ISO/TC 34/SC 11, в которых приняли участие 20 лабораторий [каждая из которых выполнила по три определения на каждой пробе (колонки 2, 3 и 8)] и 15 лабораторий [каждая из которых выполнила по три определения на каждой пробе (колонки 4—7)], и дали статистические результаты в соответствии с ISO 5725:1986¹⁾ [2], показанные в таблице В.1.

Результаты межлабораторных испытаний на пробах пальмового масла приведены в таблицах В.2 и В.3.

Таблица В.1 — Статистические результаты

	Me	год А					
	Пальмо- ядровое масло	Гидрогени- зированное соевое масло	Масло какао	Паль- мовое масло	Гидрогени- зированное кокосовое масло	Гидрогени- зированное пальмовое масло	Гидрогени- зированное пальмовое масло
1	2	3	4	5	6	7	8
Число лабораторий, оставшихся после устранения выбросов	18	18	14	14	13	13	18
Среднее значение, °С	27,6	35,4	31,4	36,3	37,1	45,5	47,5
Стандартное откло- нение повторяемости s_r °C	0,15	0,14	0,29	0,35	0,30	0,13	0,15
Коэффициент вариа- ции повторяемости, %	0,5	0,4	0,9	1,0	8,0	0,3	0,3
Предел повторяемо- сти r ($r = 2,8s_r$), °C	0,4	0,4	0,8	1,0	8,0	0,4	0,4
Стандартное отклоне- ние воспроизводимо- сти s _R ,*C	0,31	0,75	2,0	2,5	0,9	0,5	0,77
Коэффициент вариа- ции воспроизводимо- сти, %	1,1	2,1	6,4	6,9	2,5	1,1	1,7
Предел воспроизводи- мости R ($R = 2.8s_R$), °C	0,9	2,1	5,7	7,1	2,6	1,4	2,2

Т а б л и ц а В.2 — Сопоставление методов, использующих пробы пальмового масла

		Температура скольжения			
Пробы		MS 817:1989	ISO 6321		
		AOCS CC 3-25 ^a	Метод А	Метод В	
Пальмовое масло, RBDb	1	36,8	38,2	36,5	
	2	35,3	37,4	35,5	
	3	35,2	37,7	35,5	
	4	36,6	38,0	36,5	
	5	35,6	37,5	35,5	

¹⁾ ISO 5725:1986 (в настоящее время отменен) был использован для получения показателей точности.

Окончание таблицы В.2

			Температура скольжения			
Пробы		MS 817:1989	ISO 6321			
		AOCS CC 3-25 ^a	Метод А	Метод В		
Пальмовый олеин, RBD	1	22,3	24,4	25,5		
	2	22,2	24,4	25,5		
	3	22,5	24,3	25,5		
	4	22,5	24,2	24,9		
	5	22,3	24,2	24,9		
Пальмовый стеарин, RBD	1	51,6	51,8	51,5		
	2	52,8	51,8	52,8		
	3	46,0	44,8	45,0		
	4	52,3	52,8	53,4		
	5	51,0	51,0	51,5		
Сырое пальмовое масло	1	35,8	35,6			
	2	35,3	36,6			
	3	35,8	36,4	-		
	4	35,0	35,8			
	5	35,8	36,8			
Сырое пальмоядровое масло	1	27,8	27,7	27,6		
	2	26,6	27,8	27,6		
	3	26,7	26,7	27,0		
	4	26,8	26,7	27,0		
	5	27,0	27,5	27,4		
Пальмоядровое масло, RBD	1	27,8	27,8	28,2		
	2	27,8	27,6	27,6		
	3	27,7	27,5	28,0		
	4	27,8	27,2	28,0		
	5	27,6	27,3	27,8		
Пальмоядровый олеин, RBD	1	26,2	25,8	26,0		
	2	23,4	23,3	23,8		
	3	23,5	23,4	23.8		
	4	23,4	23,4	23.8		
	5	24,6	24,4	24,5		
Пальмоядровый стеарин, RBD	1	32,2	32,2	33,0		
	2	32,2	32,8	33,0		
	3	39,3	38,5	39,4		
	4	33,3	33,0	33,2		
	5	32,3	33,6	33,2		

а Малазийский стандарт MS 817:1989 [5]. AOCS Official Method CC 3-25 «Температура скольжения, температуры плавления в открытых капиллярах» (актуализирован в 1982 г.). ^b RBD: рафинированное, отбеленное, дезодорированное.

FOCT ISO 6321-2019

Таблица В.3 – Статистические результаты для проб пальмового масла

	Пальмовое масло	Пальмовый олеин	Пальмовый стеарин
Число лабораторий, оставшихся после устранения выбросов	10	11	11
Среднее значение, °С	37.4	20,5	52,1
Стандартное отклонение повторяемости s, °C	0,23	0.15	0,09
Коэффициент вариации повторяемости, %	0,6	0,7	0,2
Предел повторяемости $r (r = 2.8s_r)$, °C	0,64	0.42	0,25
Стандартное отклонение воспроизводимости s_{R^c} °C	0,78	0,98	0,54
Коэффициент вариации воспроизводимости, %	2,1	4,8	1,0
Предел воспроизводимости R ($R = 2,8s_R$), °C	2,2	2,7	1,5

Приложение ДА (справочное)

Сведения о соответствии ссылочного международного стандарта межгосударственному стандарту

Таблица ДА.1

Обозначение ссылочного	Стелень	Обозначение и наименование соответствующего межгосударственного
международного стандарта	соответствия	стандарта
ISO 661:2003	IDT	ГОСТ ISO 661—2016 «Жиры и масла животные и растительные. Приготовление пробы для испытания»

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

⁻ IDT — идентичный стандарт.

FOCT ISO 6321-2019

[3] ISO 5725-1:1994

Библиография

[1] ISO 5555	Animal and vegetable fats and oils — Sampling
	A14

(Жиры и масла животные и растительные. Отбор проб)
[2] ISO 5725:1986* Precision of test methods — Determination of repeatability and reproducibility for a standard test

method by inter-laboratory tests

(Прецизионность методов испытаний. Определение повторяемости и воспроизводимости

результатов стандартного метода с помощью межлабораторных испытаний)

Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions

[Точность (правильность и прецизионность) методов и результатов измерений. Часть 1.

Общие принципы и определения]

[4] ISO 5725-2:1994 Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method

for the determination of repeatability and reproducibility of a standard measurement method [Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода из-

мерений]

[5] MS 817:1989 The determination of melting point in open capillary tubes (slip point) for palm oil products

[Определение температуры плавления в открытых капиллярах (температура скольжения)

для продукции на основе пальмового масла]

УДК 536.4.032:006.354

MKC 67.200.10

IDT

Ключевые слова: капилляр, столб жира, температура, термометр, водяная рубашка, масла, жиры

БЗ 1-2020/149

Редактор Л.В. Коретникова Технический редактор И.Е. Черепкова Корректор Р.А. Ментова Компьютерная верстка Е.О. Асташина

Сдано в набор 03.12.2019. Подписано в печать 25.12.2019. Формат 60×84¹/₈. Гарнитура Ариал. Усл. яеч. л. 1,86. Уч.-изд. л. 1,50.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Заменен на ISO 5725-1:1994 — ISO 5725-4:1994, ISO 5725-5:1998, ISO 5725-6:1994